POLITEHNICA University of Bucharest

Facultyof Electronics, Telecommunications and Information Technology

COURSE DESCRIPTION

1. Program identification information

1.1 Higher education institution	POLITEHNICA University of Bucharest
1.2 Faculty	Electronics, Telecommunications and Information
	Technology
1.3 Department	Applied Electronics and Information Technology
1.4 Domain of studies	Computers and Information Technology
1.5 Cycle of studies	License
1.6 Program of studies/Qualification	Information engineering

2. Course identification information

2.1 Name of the course			Cryptography and Data Protection				
2.2 Lecturer Pro			Prof. Dr. ing. Adriana VLAD				
2.3 Instructor for practical activities			S.l. Dr. ing. Mădălin FRUNZETE				
2.4 Year	IV	2.5	II	2.6	Verification	2.7	Mandatory
of studies		Semester		Evaluation		Course	
				type		choice	
						type	

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week,out of 3		3.2	2	3.3 practical	1
which		course		activities	
3.4 Total hours in the curricula, out of	42	3.5	28	3.6 practical	14
which		course		activities	
Distribution of time					hours
Study according to the manual, course su	Study according to the manual, course support, bibliography and hand notes				
Supplemental documentation (library, electronic access resources, in the field, etc)					3
Preparation for practical activities, home works, essays, portfolios, etc.					5
Tutoring					0
Examinations					3
Other activities					0
3.7 Total hours of individual study	36				
3.9 Total hours per semester	78				
3. 10 Number of ECTS credit points	3				

4. Prerequisites (if applicable)

4.1 curricular	Information Transmission Theory
	Special Mathematics,
	Data Structures and Algorithms.
4.2 competence-based	It is complementary to disciplines related to information processing in
	large computer networks.

5. Requisites (if applicable)

5.1 for running the	There is no case.
course	
5.2 for running of the applications	Mandatory attendance at laboratories (according to the regulations of the UPB).

6. Specific competences

Professional	Mastering the theoretical foundations that allow understanding the					
competences	functioning of a cryptosystem, and knowledge of the most important					
	methods and practical interest cryptosystems. To develop the ability to					
	design new efficient encryption systems.					
	Knowledge skills: C3.1 Identify the problems of the domain and the					
	solving methods, specific to information systems; C3.2 Use of					
	interdisciplinary knowledge, the patterns of theoretical solutions and					
	tools, performing experiments and interpreting their results.					
Transversal	Use in practice of various and complex knowledge and concepts drawn					
competences	from subjects studied in Faculty of Electronics, Telecommunications					
	and Information Technology (information transmission theory, random					
	processes, programming, special mathematics, computer networks,					
	image processing, etc.)					
	Practical skills: C3.4 Comparative evaluation (by theoretical and					
	experimental means) of different solutions in order to optimize					
	performance. C3.5 Developing and implementing computational					
	solutions for practical problems.					

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective	The course is a comprehensive overview of secret and public key
of the course	cryptosystems, aiming at: (1) providing the student with skills in understanding, evaluating and designing enciphering algorithms and other protection techniques; (2) extending the enciphering methods in other fields (images coding, complex algorithms) and also for other purposes (the natural language modelling, the highlighting and evaluation of the entropy and redundancy of natural sources, the generation of pseudorandom numbers).
7.2 Specific objectives	The students are involved both in theoretical evaluations and in software implementation of various algorithms of conventional and public cryptography. The implementation requires knowledge of several areas of mathematics and also some familiarity with computational complexity.

8. Content

8.1 Lectures	Teaching techniques	Remarks	
Basic principles of classical and public-key	Teaching is based on theoretical	2 hrs	
cryptosystems.	foundations exposure in mixed		
Shannon's approach to the classical	mode using both blackboard	12 hrs	
cryptosystems:	and projector (covering		
• secrecy system equivocation as a	communication function and		
measure of the secrecy amount on the	demonstration). Course		
message and on the key space:	materials are lecture notes and		
perfect and ideal cryptosystems:	presentations, issues and themes		
illustrative examples	proposed (theoretical and		
• the redundancy of the language and	solving problems using the		
the breaking of the cryptosystems: the	computer), and various articles		
unicity distance: cryptanalytic attacks:	and extracts from the		
an overall evaluation of a secrecy	bibliography.		
an overall evaluation of a secrecy	one me grup my r		
system nom the practical demand.			
• product cipiters, diffusion, confusion			
and the mixing transformations;			
practical cipners.		4.1	
DES (Data Encryption Standard);		4 hrs	
AES (Advanced Encryption Standard)		0.1	
Public-key cryptosystems, including:		8 hrs	
M. E. Hellman's contributions, underlying			
the mathematical theory, the public–key			
distribution, public-key cryptosystems (the			
RSA and knapsack based systems),			
authentication and digital signature.		2.1	
Chaos-based cryptography.		2 hrs	
Bibliography			
1. Adriana Vlad, Lecture notes.			
2. C.E. Shannon, "Communication Theory of	<i>t Secrecy Systems</i> [*] , Bell Systems Tec	chnical	
Journal, 28 (1949), 656-715.			
5. W. Diffie and M. E. Hellman, New direct	ions in cryptography, IEEE Transact	tions on	
Information Theory, 22 (19/6), 644-654	G		
4. I. Angheloiu, E. Györfi şi V. Patriciu,	Securitatea și protecția informației	în sistemele	
electronice de calcul, Ed. Militară, București, 1986.			
5. Nicolae Constantinescu, <i>Criptografie</i> , Editura Academiei Romane, 2009			
6. Douglas R. Stinson, <i>Cryptography: Theory and Practice</i> , Third Edition, Chapman and			
Hall/CRC - November 01, 2005			
7. V. Patriciu, Criptografia și securitatea rețelelor de calculatoare cu aplicații în C și			
Pascal, Ed. Tehnică, București, 1994.			
8. Adriana Vlad, M. Mitrea, "A Study of Confusion Involved by Shannon's Mixing			
Transformations", Buletinul Științific al Universității "Politehnica" din București, Seria			
C, Vol. 57-58 , Nr. 1-4 , (1995-1996), pp. 55-64.			
9. Adriana Vlad, M. Mitrea, "Image Enciphering by Means of Cryptographic Mixing			
Transformations", Buletinul științific al Universității "Politehnica" din Timișoara, Tom			

43(**57**), Fasc. **2**, (1998), pp. 185-190.

- 10. Adriana Vlad, M. Mitrea, "Cryptographic Mixing Transformations forImage Applications", Proc. SPIE, Vol. 3405, (1997), pp. 477-482.
- 11. Adriana Vlad, M. Mitrea "Digital image protection by means of cryptographic mixing transformations" Proc. SPIE, Vol. **4430**, (2000), pp. 560-565.
- 12. Adriana Vlad, A. Luca, O. Hodea, R. Tataru, "Generating chaotic secure sequences using tent map and a running-key approach", Proc. of the Romanian Academy, Series A, vol.14, Special Issue-CRYPTOLOGY SCIENCE, pp.265-302, 2013.

special issue citil reliever sellitely,	pp.200 002, 2010.	
8.2 Practical applications	Teaching techniques	Remarks
Design and software implementation of the	Teaching is based on the use of	6 hrs
enciphering method and their cryptanalytic	the projector (covering	
evaluation.	communication function and	
Case study: substitutions methods,	demonstration) and on oral	
transposition methods, mixing transformation	communication method . Students	
based ciphers, data encryption standard	will independently simulate,	
(DES).	implement, test and evaluate	
Software implementation and analysis of	cryptography problems with	6 hrs
some public key cryptosystems: RSA	secret/public key by using a	
cryptosystems, knapsack based systems, Hash	software environment. The	
functions, authentication and digital signature.	teaching materials are laboratory	
Laboratory assessment	platforms.	2 hrs

Bibliography

1. M. Mitrea, Adriana Vlad, A. Branea, "*The m-gram Substitution in the Cryptographic Mixing Transformation Applied to Images*", in Proc. Intl. Symp. on Signal, Circuits & Systems - SCS'99, July 1999, Iaşi, pp. 151-155.

2. Adriana Vlad, A. Mitrea, M. Mitrea, Limba română scrisă ca sursă de informatie (Printed Romanian, as an information source), Ed. Paideia, București, 2003.

3. M.S. Baptista, "Cryptography with chaos" Physics Letters A, vol. 240 (1998) 50-54.

4. Adriana Vlad, A. Ilyas, A. Luca, "A closer view of running-key cipher on natural languages and its extension for new applications in cryptography", Proc. of the Romanian Academy, Series A, vol. 13, Number 2/2012, pp. 157–166.

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

Cryptography was and continues to be an interdisciplinary domain, of great interest and actuality, targeting information confidentiality and protection. Indirectly and at the same time very important for the scientific research in the world, these concerns create a space, an extended working platform, connecting extremely diverse fields and working techniques, while revealing new aspects for the benefit of science in general. The scientific meetings in this field are relevant in this respect, including the two editions of the conference "Romanian Cryptology Days", RCD 2011 and RCD 2013, which created an international forum for the exposition/debate of problems and applications.

The course curriculum concretely responds to these actual development requirements, subscribed to the European economy of services from Computers and Information Technology (CIT). In the context of the present technological progress, cryptography and data protection represent important concerns of the electronic industry both from the point of view of devices/systems and of the algorithms. The robustness of cipher depends on the computational power, and this course permits students' adaptation

and innovation towards new algorithms.

Students are provided with adequate skills required by the needs of present qualifications and a high quality and competitive scientific and technical training, which should enable them to easily find a job immediately after graduation; the training is perfectly adapted to the policy of the POLITEHNICA University of Bucharest both as regards its content and structure and from the point of view of aptitudes and international openness offered to students.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Weight in	
		methods	the final mark	
10.4 Lectures	- Knowledge of basic	Two check tests	70%	
	theoretical concepts	representing 20%		
	- Knowledge of the	each of the final score		
	application of theory to	during the semester,		
	specific problems	on previously		
		established dates.		
		A theme representing		
		30% of the final		
		score, under the form		
		of oral presentation.		
10.5 Practical	- Knowledge of the	Final laboratory	30%	
applications	functioning of the studied	examination,		
	encryption algorithms.	including a theoretical		
	- The ability to implement	(grid test) and a		
	an encryption algorithm.	practical exercise		
	- Understanding the	(implementing an		
	principle of secret / public	encryption algorithm).		
	cryptography, Highlighting			
	the concept of secret			
	signature.			
10.6 Minimal performance standard				
- Making a secret key encryption algorithm, understanding the unique correspondence between				
message and cryptogram				
- Understanding the principle of secret key cryptography and public key digital signature				
highlighting				

Date

Lecturer

Instructor for practical activities

..... Prof. Dr. ing. Adriana VLAD

S.l. Dr. ing. Mădălin FRUNZETE

Date of department approval

Director of Department,

.....

Prof. Dr. Ing. S. Paşca.