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Abstract
Light has a real important impact on our life, determining the circadian rhythm, the rhythm of our daily activity. Light is benefic for healthy people, but it can be also very helpful for treating disease or for enhancing the comfort and wellbeing. In the frame of our European project, ALADIN, light is intended to be a support for the elderly, in order to enhance their daily performance. The performance is appreciated by activity specific values of psycho-physiological parameters that can be modified by light. In this paper it will be described the light controller, that part of the system which realizes the adaptation of light after this parameters in order to obtain an improvement of “activation” or “relaxation” status for a certain person. The light controller is realized in two variants: one based upon the Monte Carlo algorithm, and the second that uses on the Simulated Annealing algorithm. Some experimental results are presented.
1 Introduction
This article is based on the work done inside the ALADIN project, which aims to extend our knowledge about the impact of lighting on the wellbeing and health of older people. Adaptive lighting can contribute considerably to sound sleep and a regular sleep-wake cycle, which are essential to preserve and enhance people’s health and wellbeing. This will assist older adults in living at home autonomously for a longer time and contribute to their quality of life. 
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Figure 1. ALADIN system architecture
The project’s aim is to develop an intelligent assistive system based on ambient lighting to support mental alertness and memory performance as well as relaxation in specific situations. The system is also expected to assist with regulating circadian rhythms. The system receives information about the impact of differences in the luminous environment on the subject’s affective and cognitive state via psycho-physiological signals (Electro Dermal Activity, Pulse) that is used by the lighting controller to automatically adapt the lighting parameters in order to achieve the subject’s relaxation or activation.
The adaptive lighting controller uses optimization algorithms to find lighting situations that produce better psycho-physiological responds of the subject. A possible approach is to use a method based on the Monte Carlo searching technique, which consist of testing new light situations that are randomly generated in the entire lighting parameters space and to accept only those that produce better psycho–physiological responds. The main disadvantage of this approach is the possibility to generate and to test total different light situations one after the other and this light changing can produce false psycho-physiological responds that can disturb the relaxation/activation responds of the subject. Therefore, an improvement of this method is to apply local Monte Carlo search techniques that allow us to search the new lighting situations only in a smaller neighborhood of the current lighting situation. In such a way are not possible to generate successive very different lighting situations. This method is a guided technique, because by cumulating successive local search steps it builds a searching path, from the initial to the best lighting situation. The main advantage of this method is the decreasing of the initial searching space to the space around the searching path and the main disadvantage of it is the possibility of the controller to becoming stuck at a local minimum that is not good enough for the relaxation/activation target. 

The second controller that was implemented is based on the simulated annealing algorithm. Simulated annealing is a generic probabilistic algorithm for the global optimization problems, finding a good approximation of the global optimum of a given function in a large search space. This method is inspired from metallurgy, where heating and controlled cooling of a material is used to reduce its defects. The heat causes the atoms to become released from their initial positions (a local minimum of the internal energy) and wander randomly through states of higher energy; the slow cooling gives them more chances of finding configurations with lower internal energy than the initial one. By analogy with this physical process, the simulation of annealing on a system would help find its optimum parameters for a certain task.
In the following section we will describe the biological signals used to determine the subjects’ psychological state. In the next two sections the Monte Carlo and Simulated Annealing optimum search methods are presented, while in the last one some results obtained in laboratory tests are shown. 
2 Signal Processing
The information of the subject’s psycho-physiological state is extracted from two sources: Electro-Dermal Activity (EDA) and Pulse signals. The EDA (Fig.3) signal is collected using two electrodes placed on the subject’s hand and the Pulse signal is measured using a pulse oximeter. From these two signals, three features are extracted: Skin Conductance Level (SCL), Skin Conductance Response (SCR), and Inter Beat Interval (IBI). The SCL and SCR features are extracted from the EDA signal and offer important information of the subject’s psycho-physiological state, while IBI is extracted from the Pulse signal, offering complementary information on [image: image171.jpg]EDA
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the subject’s activation or relaxation state.

[image: image172.png]SCL(t;) = % z EDA(ty +jT)




Figure 2. Extraction of SCR and SCL signals from EDA.
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Skin Conductance Level is the moving average of the skin conductance calculated using a certain time window. In our measurements the time window was 2 seconds long, but slightly shorter or longer windows are also applicable. It is worth trying to experiment with different window sizes in order to maximize the algorithms’ light adaptation capability. 

Although there are many definitions in physiology that are used to describe the momentary state of this parameter, we finally – based on experience concerning our present purposes - decided to use a very simple calculation of it: SCR is defined as the standard deviation of the EDA alternative component. To obtain the EDA alternative component we simply subtracted the SCL (moving average) from the raw EDA data. The SCR feature shows a good response to the light stimulus.
The Electro-Dermal Activity (EDA) is measured in micro-Siemens; the value of an average adult is between 10 – 20 micro-Siemens. According to our and BLL’s experiments elderly sometimes does not have almost any skin conductance, sometimes have only up to 4 micro-Siemens. This means that if we are developing algorithms for elderly, in the software development period we have to use elderly as test person, otherwise the algorithms might not be applicable for them.
IBI (Inter-Beat Interval) is the time interval elapsed between two heart beats. It is measured as the distance in time between two maximums of the pulse
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	Figure 3. EDA response to light stimulus


signal. As we said earlier, the Pulse signal is measured using an oximeter. This technique is frequently subject to artifacts caused by the patient’s movements that are propagated into the IBI signal as high frequency spikes. These can be easily removed from the signal through integration. 

	Pulse Signal
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	Heart Rate
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	Figure 4. a) Measuring the Inter Beat Interval parameter; b) IBI artifact reduction


All the parameters that will be used in the following algorithms are normalized, so that their values will vary in the [0, 1] interval.
3 Random Search Algorithms
Consider the problem of trying to find the optimal [image: image5.png]xeD



 based on noise-free measurements of an objective function[image: image7.png]E=E(x)



. Random search methods are perhaps the simplest methods of stochastic optimization in such a setting and can be quite effective in many problems. Their relative simplicity is an appealing feature to both practitioners and theoreticians. These direct random search methods have a number of advantages relative to most other search methods. The advantages include relative ease of coding in software, the need to only obtain [image: image9.png]


 measurements (versus gradients or other ancillary information), reasonable computational efficiency (especially for those direct search algorithms that make use of some local information in their search), Broad applicability to non-trivial energy functions and/or to [image: image11.png]


 that may be continuous, discrete, or some hybrid form, and a strong theoretical foundation. Some of these attributes were mentioned in the forward-looking paper of Karnopp (1963). A good recent survey of random search and related methods is Kolda et al. (2003). 

This section describes two direct random search techniques. These two algorithms represent only a tiny fraction of available methods. Solis and Wets (1981) and Zhigljavsky (1991) are among many references discussing these and other random search methods. The two algorithms here are intended to convey the essential flavor of most available direct random search algorithms. With the exception of some discussion at the end of the subsection, the methods here assume perfect (noise-free) values of the objective function[image: image13.png]


. 

3.1 Blind Random Search

The first method we discuss is ''blind random search'' that searches for solution in the entire states space [image: image15.png]


.  This is the simplest random search method, where the current sampling for [image: image17.png]


 does not take into account the previous samples. That is, this blind search approach does not adapt the current sampling strategy to information that has been garnered in the search process. The approach can be implemented in batch (non-recursive) form simply by laying down a number of points in [image: image19.png]


 and taking the value of  [image: image21.png]


 yielding the lowest [image: image23.png]


 value as our estimate of the optimum. The approach can be conveniently implemented in recursive form as we illustrate below. 

The simplest setting for conducting the random sampling of new (candidate) values of [image: image25.png]


 is when [image: image27.png]


 is a hypercube and we are using uniformly generated values of[image: image29.png]


. The uniform distribution is continuous or discrete for the elements of [image: image31.png]


 depending on the definitions for these elements. In fact, the blind search form of the algorithm is unique among all general stochastic optimization algorithms in that it is the only one without any adjustable algorithm coefficients that need to be ''tuned'' to the problem at hand. (Of course, a de facto tuning decision has been made by choosing the uniform distribution for sampling.) 

For a domain [image: image33.png]


 that is not a hypercube or for other sampling distributions, one may use transformations, rejection methods, or Markov chain Monte Carlo to generate the sample [image: image35.png]


 values (see, e.g., Gentle, 2003). For example, if [image: image37.png]


 is an irregular shape, one can generate a sample on a hypercube superset containing [image: image39.png]


 and then reject the sample point if it lies outside of [image: image41.png]


. 

The steps for a recursive implementation of blind random search are given below. This method applies when [image: image43.png]


 has continuous, discrete, or hybrid elements. 

Step 0: (Initialization) Choose an initial value of[image: image45.png]


, say [image: image47.png]¥, €D



, either randomly or deterministically. (If random, usually a uniform distribution on [image: image49.png]


 is used). Calculate [image: image51.png]E(x,)
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. 

Step 1:       Generate a new independent value                                [image: image55.png]x,..k+1)eD



, according to the chosen probability distribution. If[image: image57.png]
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. 

Step 2: Stop if the maximum number of [image: image63.png]


 evaluations has been reached or the user is otherwise satisfied with the current estimate for [image: image65.png]


 via appropriate stopping criteria; else, return to Step 1 with the new [image: image67.png]


 set to the former[image: image69.png]k+1



. 
The above algorithm converges almost surely to [image: image71.png]


 under very general conditions (see, e.g., Spall, 2003, pp. 40-41). Of course, convergence alone is an incomplete indication of the performance of the algorithm. It is also of interest to examine the rate of convergence. The rate is intended to tell the analyst how close [image: image73.png]


 is likely to be to [image: image75.png]


 for a given cost of search. While blind random search is a reasonable algorithm when [image: image77.png]


 is low dimensional, it can be shown that the method is generally a very slow algorithm for even moderately dimensioned [image: image79.png]


 (see, e.g., Spall, 2003, 42-43). This is a direct consequence of the exponential increase in the size of the search space as [image: image81.png]


 increases. 
3.2 Local Random Search

This algorithm was described in Matyas (1965). Note that the use of the term ''local'' here pertains to the sampling strategy and does not imply that the algorithm is only useful for local (versus global) optimization. As with blind search, the algorithm may be used for continuous or discrete problems. 

Step 0: (Initialization) Pick an initial guess[image: image83.png]%,eD



, either randomly or with prior information. Set[image: image85.png]


. 

Step 1: Generate an independent random vector [image: image87.png]d, € R?



 and add it to the current [image: image89.png]
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. Check if [image: image93.png]¥. +d. €D
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, generate a new [image: image97.png]


 and repeat or, alternatively, move [image: image99.png]


 to the nearest valid point within [image: image101.png]
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 or the aforementioned nearest valid point in[image: image107.png]


. 

Step 2: If  [image: image109.png]E(xpe(k +1)) < E(x)



, 
            set  [image: image111.png]Xk + 1)



; else, set [image: image113.png]Fo.



. 

Step 3: Stop if the maximum number of [image: image115.png]


 evaluations has been reached or the user is otherwise satisfied with the current estimate for  [image: image117.png]


 via appropriate stopping criteria; else, return to Step 1 with the new [image: image118.png]


 set to the former[image: image120.png]k+1



. 

Matyas (1965) and others have used for continuous problems the (multivariate) normal distribution for generating[image: image122.png]


. However, the user is free to set the distribution of the deviation vector[image: image124.png]


. The distribution should have mean zero and each component should have a variation (e.g., standard deviation) consistent with the magnitudes of the corresponding [image: image126.png]


 elements. This allows the algorithm to assign roughly equal weight to each of the components of [image: image128.png]


 as it moves through the search space. Although not formally allowed in the convergence theory, it is often advantageous in practice if the variability in [image: image130.png]


 is reduced as k increases. This allows one to focus the search more tightly as evidence is accrued on the location of the solution (as expressed by the location of our current estimate[image: image132.png]


). 

4 Simulated Annealing
Simulated annealing is a generalization of a Monte Carlo method for examining the equations of state and frozen states of n-body systems [Metropolis et al. 1953]. The concept is based on the manner in which liquids freeze or metals re-crystallize in the process of annealing. In an annealing process a melt, initially at high temperature and disordered, is slowly cooled so that the system at any time is approximately in thermodynamic equilibrium. As cooling proceeds, the system becomes more ordered and approaches a "frozen" ground state at T=0. Hence the process can be thought of as an adiabatic approach to the lowest energy state. If the initial temperature of the system is too low or cooling is done insufficiently slowly the system may become quenched forming defects or freezing out in meta-stable states (i.e. trapped in a local minimum energy state). 

The original Metropolis scheme was that an initial state of a thermodynamic system was chosen at energy E and temperature T, holding T constant the initial configuration is perturbed and the change in energy [image: image134.png]dE



 is computed. If the change in energy is negative the new configuration is accepted. If the change in energy is positive it is accepted with a probability given by the Boltzmann distribution exp -([image: image136.png]dE/T



). This processes is then repeated sufficient times to give good sampling statistics for the current temperature, and then the temperature is decremented and the entire process repeated until a frozen state is achieved at T=0. 

By analogy the generalization of this Monte Carlo approach to combinatorial problems is straight forward [Kirkpatrick et al. 1983, Cerny 1985]. The current state of the thermodynamic system is analogous to the current solution to the combinatorial problem, the energy equation for the thermodynamic system is analogous to at the objective function, and ground state is analogous to the global minimum. The major difficulty (art) in implementation of the algorithm is that there is no obvious analogy for the temperature T with respect to a free parameter in the combinatorial problem. Furthermore, avoidance of entrainment in local minima (quenching) is dependent on the "annealing schedule", the choice of initial temperature, how many iterations are performed at each temperature, and how much the temperature is decremented at each step as cooling proceeds. 
Despite its name, simulated annealing has nothing to do either with simulation or annealing. Simulated annealing is a problem solving technique based loosely on the way in which a metal is annealed in order to increase its strength. When a heated metal is cooled very slowly, it freezes into a regular (minimum-energy) crystalline structure. 

A simulated annealing algorithm searches for the optimum solution to a given problem in an analogous way. Specifically, it moves about randomly in the solution space looking for a solution that minimizes the value of some objective function. Because it is generated randomly, a given move may cause the objective function to increase, to decrease or to remain unchanged. 

A simulated annealing algorithm always accepts moves that decrease the value of the objective function. Moves that increase the value of the objective function are accepted with probability 
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where QUOTE 
        is the change in the value of the objective function E and [image: image139.png]


 is a control parameter called the temperature . I.e., a random number generator that generates numbers distributed uniformly on the interval (0, 1) is sampled, and if the sample is less than [image: image141.png]


, the move is accepted. 
By analogy with the physical process, the temperature [image: image143.png]


 is initially high. Therefore, the probability of accepting a move that increases the objective function is initially high. The temperature is gradually decreased as the search progresses, i.e. the system is cooled slowly. In the end, the probability of accepting a move that increases the objective function becomes vanishingly small. In general, the temperature is lowered in accordance with an annealing schedule. 
The most commonly used annealing schedule is the exponential cooling. Exponential cooling begins at some initial temperature, [image: image145.png]


, and decreases the temperature in steps according to [image: image147.png]


where [image: image149.png]0<a<1



. Typically, a fixed number of moves must be accepted at each temperature before proceeding to the next. The algorithm terminates either when the temperature reaches some final value, [image: image151.png]


, or when some other stopping criterion has been met. 

The choice of suitable values for[image: image153.png]


, [image: image155.png]


 and [image: image157.png]


is highly problem-dependent. However, empirical evidence suggests that a good value for [image: image159.png]


 is 0.95 and that [image: image161.png]


should be chosen so that the initial acceptance probability is 0.8. The search is terminated typically after some fixed, total number of solutions has been considered. 
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	Figure 5. Different paths took by the optimum search algorithms on a given system: a) Global Search; b) Local Search; c) Simulated Annealing


Finally, there is the question of selecting the initial solution from which to begin the search. A key requirement is that it be generated quickly. Therefore, the initial solution is generated typically at random. However, sometimes the initial solution can be generated by some other means such as with a greedy algorithm.
In Figure 5 we compare the paths that the three previously presented algorithms would take through the domain [image: image166.png]


 as they search for the minimum energy. The global search algorithm, shown in Figure 5 a), guarantees to find the system’s optimum, but it regularly has jumps of up 80% of the search domain’s extend that are very unpleasant in the case of adaptive lighting, as it induces rapid radical changes of both color and intensity of the light that wouldn’t be able to relax, nor activate the subject, as they would rather annoy him. The local search algorithm eliminates this unpleasant effect of rapid variation in the lighting parameters, but it doesn’t offer any guarantee as to the optimum that it finds is a global one. It is usually local, as it can be seen in Figure 5 b). The simulated annealing algorithm, shown in Figure 5 c)  solves both of the previous problems, as its jumps are also local, but by allowing jumps to system states that have higher values, it can avoid local minimums if the color temperature parameter is high enough to permit the system to overcome or tunnel the energy barriers next to the local minimum.
5 Experimental results

In this section we will present the results that we obtained using the Simulated Annealing algorithm. We tested the system in the facilities of Bartenbach Light Laboratory GmbH. The test facility is composed of a room whose only source of light is the ALADIN system. Psychological state information is extracted from the EDA and Pulse signals, which are collected though sensors attached on the subjects’ hand. Lighting is provided by 10 lighting sources, five of which are providing 2700 K white light, while the others are providing 6000 K white light. For each color temperature, four of the sources provide ambient lighting, while a fifth provides local lighting.

The tests were conducted on a 40 year old volunteer, and consisted of him being connected to the ALADIN system while it performed two tasks. The first was to try and relax the subject by adjusting the lighting parameters; the second was to activate him by the same means. In both cases, the lighting parameters were controlled using the simulated annealing algorithm.

In our implementation of the Simulated Annealing algorithm, x, the system’s state, is represented by the lighting parameters vector composed of each lighting channel’s intensity, while the objective’s function, E, is taken by a linear mixture of the SCR, SCL and IBI values given by the following formula:
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In order to represent the light’s variation during a task, the 10-dimensional space of lighting parameters must be projected into a bi-dimensional one, represented by the intensity and color temperature of the ambient light, provided by the first 8 channels. The intensity is given by the sum of the first 8 lighting channels’ intensity, while the color temperature is provided by the weighed mean of the same channels’ color temperature parameter.
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In Figure 6 a) and 6 b), we can see that the SCR signal doesn’t have a monotonous variation towards lower values for relaxation, or higher values for the activation task, but rather that the system also introduces variations in the lighting parameters that determine a variation of the SCR signal contrary to the desired evolution. This is, however, just a local behavior, as the system’s global tendency is to optimize the subject’s either relaxation or activation state. As the figures show, in the end, the SCR signal is very low for the relaxation task, and significantly higher at the end of the activation task.

Figures 6 c) and d) show the variation of the lighting parameters in the Intensity – Color Temperature space during the respective relaxation and activation tasks. As it was expected, for the relaxation task, the light’s intensity is lowered, as well as the color temperature. For the activation task both the intensity and the color temperature of the light rise.
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	c)
	d)

	Figure 6. SCR and lgihting parameters variation for the relaxation (a, c) and activation (b, d) tasks. The doted line shows all the system’s changes, while the thicker line shows only the changes that led to an amelioration of the subject’s state.


6 Conclusions

We have implemented an adaptive light controller using the Simulated Annealing algorithm. The algorithm was chosen after analyzing three different stochastic search algorithms. Simulated Annealing was the best suited for this problem, as it allows for small variations of the lighting parameters and it also guarantees to find the global optimum of the system.
The experimental results prove our presumptions and show that the algorithm is both able to overcome getting stuck into local minimums, and to adapt the lighting parameters in order to accomplish the relaxation and activation tasks that the ALADIN system wishes to provide.
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