ASUPRA COMPLEXITATII MATEMATICE A FILTRARII PE STRUCTURI DE SEMIGRUP

Dinu COLTUC

FIE, Universitatea Valahia Targoviste, email: coltuc@valahia.ro

CEA-UPB – 15 mai 2008

PLAN

- Introduction
- Complexité mathématique
- Filtrage max/min
- Moyenneur & lissage exponentiel
- Conclusions

INTRODUCTION

Monoïde: structure algébrique

- \bullet ensemble E
- loi de composition interne associative \diamond
- (élément neutre)

Exemples (E, \diamond) :

- (ensemble des entiers naturels, addition)
- (ensemble des parties d'un ensemble E, union ensembliste)
- (ensemble des entiers naturels, max/min)
- (ensemble des entiers naturels, multiplication)

Le filtrage:

- $\bullet x_i \in E, i = 0, \dots, N$ l'entrée
- $y_i \in E$, i = 0, ..., N p + 1 la sortie
- p: la fenêtre du filtre

$$y_i = x_i \diamond x_{i+1} \diamond \ldots \diamond x_{i+p-1}$$

Le but

- la complexité mathématique du filtrage
- l'existance d'algorithmes optimaux
- l'extension pour d'autre structures algébriques

COMPLEXITE MATHEMATIQUE (IEEE TSP'08)

On va examiner le calcul pour toute la séquence par groups de n

- \bullet O(n) le nombre d'operations (\diamond) pour calculer n résultats
- \bullet C(n) la complexite mathematique per échantillon:

$$C(n) = \frac{O(n)}{n}$$
 operations/échantillon

• C la complexité du filtrage pour toute la sequence:

$$C = \min_{n} \frac{O(n)}{n}$$
 operations/échantillon

$$\bullet n = 1$$

$$y_0 = x_0 \diamond x_1 \diamond \dots \diamond x_{p-1}$$
$$-O(1) = p-1$$
$$-C(1) = p-1$$

 $\bullet n = 2$

$$y_0 = x_0 \diamond (x_1 \diamond x_2 \dots \diamond x_{p-1})$$

$$y_1 = (x_1 \diamond x_2 \dots \diamond x_{p-1}) \diamond x_p$$

-p-1 échantillons d'entré sont communs $\Rightarrow p-2$ operations

$$-O(2) = p - 2 + 1 + 1$$

$$-C(2) = p/2$$

$$C(1) > C(2)$$

 $\bullet n \leq p$

$$x_0x_1\dots x_{p-1}|x_p\dots x_{p+n-1}$$

- les échantillons d'entré divisé en 2 groupes
- le minimum d'opérations:
 - * calculer y_0 (1er group) avec p-1 opérations.
 - * calculer le resultat partiel du 2eme group avec n-2 op.
 - * et calculer les n-1 résultats finaux avec n-1 op.

$$-O(n) = (p-1) + (n-2) + (n-1)$$
$$-C(n) = \frac{p+2n-4}{n} = 2 + \frac{p-4}{n}$$

• C(n) décroît avec $n \Rightarrow$ le minimum pour n = p

$$C(p) = \frac{3p - 4}{p}$$

• L'algorithme:

$$x_0x_1 \dots x_{p-2}x_{p-1}|x_px_{p+1}\dots x_{p+n-1}$$

Group I

$$R_{p-1} = x_{p-1}$$

$$R_{p-2} = x_{p-2} \diamond R_{p-1}$$

$$\vdots$$

$$R_i = x_i \diamond R_{i+1}$$

Les résultats finaux:

 $R_0 = x_0 \diamond R_1$

$$y_0 = R_0, \ y_i = R_i \diamond S_{i-1}, \ i = 1, \dots, n-1$$

• le cas $n = p \Rightarrow$ Gil-Werman (PAMI'93), Van Herk (PRL'91)

Group II

$$S_0 = x_p$$

$$S_1 = S_0 \diamond x_{p+1}$$

$$\vdots$$

$$S_i = S_{i-1} \diamond x_{p+i}$$

$$\vdots$$

$$S_{n-2} = S_{n-3} \diamond x_{n+p-2}$$

• n = p + 1 (Coltuc, ICECS'96)

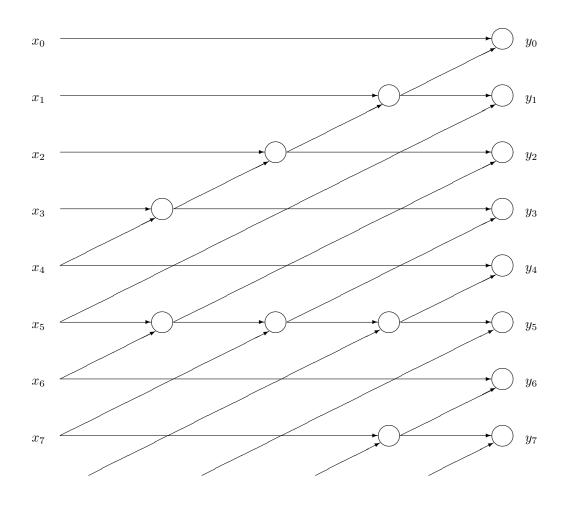
$$x_0x_1 \dots x_{p-1} | x_p \dots x_{2p-1}$$

- les échantillons d'entré divisé en 2 groupes
- le minimum d'opérations:
 - * calculer y_0 (group I) avec p-1 opérations
 - * calculer y_p (group II) avec p-1 opérations
 - * calculer les autre p-1 résultats finaux avec p-1 op.

$$-O(p+1) = (p-1) + (p-2) + (p-1)$$
$$-C(p+1) = \frac{3p-3}{p+1} = 3 - \frac{6}{p+1}$$

$$C(1) > C(2) > \ldots > C(p) > C(p+1)$$

• L'algorithme: exemple $p = 5 \Rightarrow C(6) = 2$ opérations/échantillon



- $\bullet n = p + 2$
 - -calculer les y_i qui n'ont pas des x_i commun (2p-2 op.)
 - -calculer les y_k qui restent en utilisant des résultats partiels

$$x_0x_1 \dots x_{p-1}|x_px_{p+1} \dots x_{2p-1}|x_{2p}$$

$$|x_0|x_1 \dots x_{p-1}x_p|x_{p+1} \dots x_{2p-1}x_{2p}|$$

$$x_0x_1 \dots x_{p-1}|x_p|x_{p+1} \dots x_{2p-1}x_{2p}$$

$$-O(p+2) = 4p - 4 \Rightarrow C(p+2) = 4 - \frac{12}{p+2}$$

$$-C(1) > C(2) > \ldots > C(p) > C(p+1) < C(p+2)$$

$$\bullet n = p + 3, p + 4,, 2p + 2$$

$$-\ldots > C(p+1) < C(p+2) > \ldots > C(2p+2) = C(p+1)$$

Commentaires

ullet la complexité du filtrage sur monoïdes dans une fenêtre p:

$$C_p \ge 3 - \frac{6}{p+1}$$

- \bullet C_p est croissante en fonction de p
- $C_p < 3$ opérations/échantillon, $\forall p$
- algorithmes optimaux existent $\forall p$
- unicité? non (pour certain p impaires)
- seulement l'associativité de \diamond a été consideré
- si o a d'autres propriétés, la complexité peut diminuer

FILTRAGE MAX/MIN

- applications signal et image (morphologie, filtrage d'ordre)
- E: l'ensemble des entiers
- \bullet (E,max), (E,min) monoïdes \Rightarrow complexité du filtrage:

$$C_p = 3 - \frac{6}{p+1}$$

- \bullet C_p independant de la statistique des données
- le gain, par raport a l'algorithme de Gil-Werman:

$$\Delta C_{OGW} = \frac{2}{p+1} - \frac{4}{p(p+1)} \approx \frac{2}{p}$$

• max, min \Rightarrow d'autres propriétés (treillis ordonée)

MAX/MIN - Gevorkian et al. (IEEE Trans on PAMI'96)

- algorithme dépendent de la statistique
- basé sur l'algorithme de Gil-Werman +
 - -l'information aquise à l'iteration anterieure la position du max: le dernier ou avant-dernier: tous R_i^{k+1} disponible (p-1 comparaisons eliminé), etc.
- complexité (iid): $C_G = 2.5 \frac{3.5}{p} + \frac{1}{p^2}$;
- avec l'algorithme optimal: $C_{OG} = 2.5 \frac{4}{p+1} \frac{1}{p(p+1)}$
- le gain:

$$\Delta C_G = \frac{1}{2(p+1)} - \frac{3}{2p(p+1)} + \frac{1}{p^2(p+1)} \approx \frac{1}{2p}$$

MAX/MIN Gil-Kimmel (IEEE Trans on PAMI, dec. 2002)

- algorithme independent de données
- le plus rapide algorithme publié
- basé sur l'algorithm de Gil-Werman +
 - étape calcul preliminaire: la demi-fenêtre où est le max * 1 comparison pour éliminer $\frac{p-1}{2}$
 - -étape calcul final: observe que les R_i et S_j sont ordonnées $*\log p$ a la place de p

MAX/MIN Gil-Kimmel

• complexité:

$$C_{GK} = 1.5 + \frac{\lceil \log_2(p-1) \rceil}{p} - \frac{p \mod 2}{2p}$$

• avec l'algorithm optimal:

$$C = 1.5 - \frac{3}{2(p+1)} + \frac{|\log_2 p|}{p+1} - \frac{p \mod 2}{2(p+1)}$$

• le gain:

$$\Delta C(p = 2^k + 1) = \frac{1}{2(p+1)} + \frac{\log_2(p-1) + 1}{2p(p+1)} \approx \frac{1}{2p}$$

$$\Delta C(p \neq 2^k + 1) = \frac{3}{2(p+1)} + \frac{2|\log_2 p| - p \mod 2}{2p(p+1)} \approx \frac{3}{2p}$$

MAX/MIN - plus rapide (Coltuc, IEEE Trans on SP'08)

- x_i ordonées \Rightarrow complexité: 1 comparaison/échantillon
- exploiter l'ordre \Rightarrow elargir le group de p+1 à p+r+s+1

$$-x_0, x_1, \ldots, x_{2p+r+s-1}$$

$$x_{p-1} \ge x_p \ge x_{p+1} \ge \dots \ge x_{p+r-1}$$

$$x_{p+r} \le x_{p+r+1} \le \dots \le x_{p+r+s-1} \le x_{p+r+s}$$

-soit t = r + s; la complexité devient:

$$C_{p,t} = 3 - \frac{2t+6}{p+t+1}$$

- $-x_i$ ordonées $\Rightarrow C_{p,t} = 1$
- $-x_i \text{ IID} \Rightarrow t_{moy} = 2$:

$$C_{p,IID} = 3 - \frac{10}{p+3}$$

Max/min: (Coltuc, IEEE Trans on SP'08)

	Mathematical complexity	Memory
Algorithm	[comparisons/sample]	[operands/iteration]
Gil-Werman	$3-\frac{4}{p}$	2p-1
Optimal		
semi-group	$3 - \frac{6}{p+1}$	2p
Extended		
semi-group	$3 - \frac{6+2T}{p+1+T}$	2p+T
Gil-Kimmel	$1.5 + \frac{\lceil \log_2(p-1) \rceil}{p} - \frac{p \mod 2}{2p}$	$2p + \lceil \frac{p+1}{2} \rceil - 1$
Improved		
Gil-Kimmel	$1.5 - \frac{1.5}{p+1} + \frac{\lceil \log_2 p \rceil}{p+1} - \frac{p \mod 2}{2(p+1)}$	$2p + \lceil \frac{p+1}{2} \rceil$
Extended		
Gil-Kimmel	$\frac{1.5p - (p \bmod 2)/2 + \lceil \log_2 p \rceil + T}{p+1+T}$	$2p + \lceil \frac{p+1}{2} \rceil + T$

LE MOYENNEUR

• on élimine les divisions par p $(x_i/p, y_i/p)$

$$y_i = x_i + x_{i+1} + \ldots + x_{i+p-1}$$

 \bullet (E,+) monoïde \Rightarrow avec l'algorithme optimal

$$C_M = 3 - \frac{6}{p+1} \to 3$$
 additions/échantillon

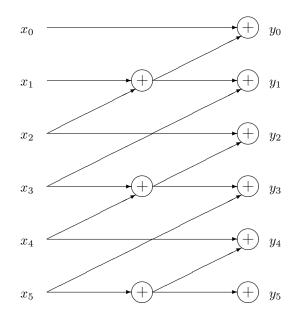
• $(E,+) \Rightarrow$ structure de group $(x_i \text{ inversible})$

$$y_{i+1} = y_i + x_{i+p} - x_i$$

• complexité: 2 additions/échantillon

LE MOYENNEUR

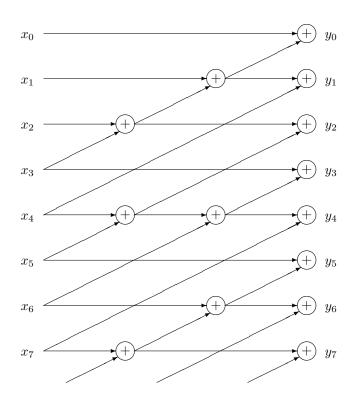
• $p = 3 \Rightarrow 1.5$ additions/échantillon



• moyenneur $3 \times 3 \Rightarrow 3$ additions /échantillon

LE MOYENNEUR

• $p = 4 \Rightarrow 1.8$ additions/échantillon



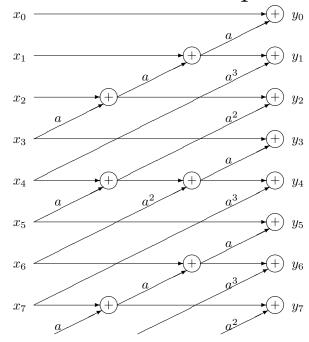
- $p = 5 \Rightarrow 2$ additions/échantillon
- $p > 5 \Rightarrow 2 < C_p < 3 \Rightarrow$ sans soustractions

LISSAGE EXPONENTIEL

- le même problème $y_i = \sum_{k=0}^{p-1} a^i x_{i+k}$
- calcul récursif \Rightarrow 2 multiplications + 2 additions /ech.

$$y_{i+1} = (y_i - x_{i-p})/a + a^{p-1}x_{i+p}$$

• l'algorithme optimal \Rightarrow moins complexe pour p = 3, 4



CONCLUSIONS

- nous avons montré que le filtrage sur un monoïde est de complexité $C(n) \ge 3 \frac{6}{p+1}$ (p est la taille de la fenêtre)
- \bullet algorithmes optimaux existent pour \forall fenetres (1D)
- si apart l'associativité, l'opération a d'autres propriétés, la complexité peut diminuer
- les performances des algorithmes max/min basés sur le schema de Gil-Werman sont ameliorées
 - -est-ce qu'on peut aller plus loin? $(1.25 < C_p < 1.5)$
- le moyenneur et le lissage exponentiel \Rightarrow calcul moins complexe que par l'algorithm recursif pour fenêtres de petite taile