
Model-checking of Real-Time

Systems

 Cristina Seceleanu & Paul Pettersson
Embedded Systems, IDT, MDH

Real-Time Systems

Plant
Continuous

Controller Program
Discrete

E.g.: Air Bags, Cruise Control, ABS
Process Control, Production Lines, Robots
Real-time Protocols
DVD/CD Players

Real-Time System
A system where correctness not only depends on the
logical order of events but also on their timing!!

sensors

actuators

Task
Task

Task
Task

Real-Time Model-Checking

sensors

actuators

Task
Task

Task
Task

a

c b

1 2

4 3

a

c b

1 2

4 3

1 2

4 3

1 2

4 3

a

c b

UPPAAL Model

Model of
environment
(user-supplied)

Model of
tasks
(automatic?)

Plant
Continuous

Controller Program
Discrete

Model-Checking

 A – Model: Network of Timed Automata

 F – Requirement: temporal logical formula, e.g.
– Invariant: something bad will never happen,

something may happen

– Liveness: something will eventually happen

Model: A

Requirement
Specification: F A satisfies F

Yes!

No!
Diagnostic
Information

UPPAAL

Formal design and analysis

Modeling

Simulation

Verification

Example model-based verification

6

Is this error state

reachable?

Is this component

always operating in

this state?

Max response time

between reaching

these two states?

Is this variable value

always less than 64?

Is the system

guaranteed to

reach this state?

Model-checking of Real-Time

Systems

• Modeling Formalism

• A Simple Example

Finite state automata

● Finite state graph, with

● Set of nodes (states)

● Set of edges (transitions)

● Set of labels (actions)

9

Light Control

Wanted Behaviour:
• pressed once = light

• pressed twice quickly = light will get brighter
• pressed again = light off.

Off Light Bright
press? press?

press?

press?

11

Finite state automata with

variables

• Extend FSA with variables e.g.

– Relational automata and/or guarded commands

• Guards and assignments on transitions

• Maybe infinite state, but finite state for bounded domain

– Timed automata is another example (clocks)

• Guards and resets over clock variables on transitions

• Infinite state!

• Semantics: Transition Systems

guard

action

reset

12

Timed Automata Alur & Dill 1990

• Guard
– Timing constraints e.g. X>10

• Action

– Synchronization e.g. a

(handshake: a! for send,

a? for receive)

• Clock reset
– Reset clock to 0 e.g. X:=0

a

X>10

X:=0

location

Light Control

Wanted Behaviour:
• pressed once = light

• pressed twice quickly = light will get brighter
• pressed again = light off.

Off Light Bright
press? press?

press?

press?

Off Light Bright
press? press?

press?

press?

SOLUTION: Add real-valued clock x to
measure the delay between press events

X:=0

X<=3

X>3

 with Timing

Timed Automata:

Light Control

Timed Automata: Semantics

n

m

a

Alur & Dill 1990

Clocks: x, y

x<=5 & y>3

x := 0

Guard
Boolean combination of integer bounds
on clocks

Reset
Action performed on clocks

Transitions

(n , x=2.4 , y=3.1415)
 (n , x=3.5 , y=4.2415)

e(1.1)

(n , x=2.4 , y=3.1415)
 (m , x=0 , y=3.1415)

a

State
 (location , x=v , y=u) where v,u are in R

Action
used

for synchronization

n

m

a

Clocks: x, y

x<=5 & y>3

x := 0

Transitions

(n , x=2.4 , y=3.1415)
 (n , x=3.5 , y=4.2415)

 e(1.1)

(n , x=2.4 , y=3.1415)

 e(3.2)

x<=5

y<=10

Location
Invariants

g1
g2 g3

g4

Timed Automata
with Invariants

Invariants
ensure

progress!!

Clock Constraints

18

Timed Automata:

Example

 l

X>=2

X:=0

X:=0

19

Timed Automata:

Example

 l

X>=2

X:=0

X:=0

20

Timed Automata:

Example

 l

2<=x<=3

X:=0

X:=0

21

Timed Automata:

Example

 l

2<=x<=3

X:=0

X:=0

22

Timed Automata:

Example

 l

X>=2

X:=0

X:=0

X<=3

23

Timed Automata:

Example

 l

X>=2

X:=0

X:=0

X<=3

24

Timed Automata: Example

(periodic task, period 20)

x=20

x:=0

T
x≤20

25

Timed Automata: Example

(sporadic task w min period 20)

x≥20

x:=0

T

26

Timed Automata: Example

(aperiodic task, every 5 to 100)

5≤x≤100

x:=0

T
X≤100

27

Timed Automata: Light

Switch

• Switch may be turned

on whenever at least 2

time units has elapsed

since last “turn off”

• Light automatically

switches off after 9 time

units if it is not pressed.

off on

 x>2 press? x:=0
x>2

press?

X:=0 x:=0 x=9

x≤9

28

Semantics Definition

• Clock valuations:

• State:

• Action transition

• Delay transition

)(),(CVvandLlwherevl

0:)(RCvCV

0')')((

),(),(

RddwheneverdvlInv

iffdvlvl d

g a r
l l’

)')('(][')(

)','(),(

vlInvandrvvandvg

iffvlvl a

Timed Automata: Example

...)9,0,()9),3(9,(

)3,3,(),0,(

),()0,(

)5.3,()0,(

)3(93

5.3

yxoffyxon

yxonyxon

yxonyxon

yxoffyxoff

click

push

push

off on

 x>2 push x,y :=0
x>2

push

x:=0 y=9

y<=9

x:=0

start
x=y=0

click

Networks of Timed Automata

l1

l2

a!

x>=2
i==3

x := 0
i:=i+4

m1

m2

a?

y<=4

………….
Two-way synchronization
on complementary actions.

Closed Systems!

(l1, m1,………, x=2, y=3.5, i=3,…..) (l2,m2,……..,x=0, y=3.5, i=7,…..)

tau
Example transitions

with (finite) integer variables

Datastructure: Zones
From infinite to finite

State

(n, x=3.2, y=2.5)

x

y

x

y

Symbolic state (set)

Zone:
conjunction of
x-y<=n, x<=>n

(n, 1≤x≤4, 1≤y≤3)

32

Symbolic Transitions

n

m

x>3

y:=0

delays to

 conjuncts to

projects to

x

y

1<=x<=4
1<=y<=3

x

y
1<=x, 1<=y
-2<=x-y<=3

x

y 3<x, 1<=y
-2<=x-y<=3

3<x, y=0

x

y

Thus (n,1<=x<=4,1<=y<=3) =a => (m,3<x, y=0)

a

using Zones

Zones = Conjuctive constraints

• A zone Z is a conjunctive formula:

 g1 & g2 & ... & gn

 where gi is a clock constraint:

 xi ~ bi or xi-xj~bij

• Use a zero-clock x0 (constant 0)

• A zone can be re-written as a set:

 {xi-xj ~ bij | ~ is < or , i,jn}

• This can be represented as a MATRIX, DBM

 (Difference Bound Matrices)

Operations on Zones

• Delay: SP(Z) or Z
– [Z] = {u+d| d R, u[Z]}

• Weakest pre-condition: WP(Z) or Z (the dual of Z)
– [Z] = {u| u+d[Z] for some dR}

• Reset: {x}Z or Z(x:=0)
– [{x}Z] = {u[0/x] | u [Z]}

• Conjunction
– [Z&g]= [Z][g]

An important theorem on Zones

• The set of zones is closed under all constraint

operations (including x:=x-c or x:=x+c)

• That is, the result of the operations on a zone is

a zone

• That is, there will be a zone (a finite object i.e a

zone/constraints) to represent the sets: [Z],

[Z], [{x}Z]

One-step reachability: SiSj

• Delay: (n,Z) (n,Z’) where Z’= Z inv(n)

• Action: (n,Z) (m,Z’) where Z’= {x}(Z g)

• Successors(n,Z)={(m,Z’) | (n,Z) (m,Z’),
Z’Ø}

• Sometime we write: (n,Z)(m,Z’) if (m,Z’) is a
successor of (n,Z)

n m
g x:=0

if

Now, we have a search problem

(n0,Z0)

S2, S3 Sn

T2

T1

Train Crossing

River

Crossing

Gate

Stopable
Area

[10,20]

[7,15]

Queue

[3,5]

Train Crossing

River

Crossing

Gate

Stopable
Area

[10,20]

[7,15]

Queue

[3,5]
appr,
stop

leave

go

empty
nonempty
hd, add,rem

e

Communication via channels and
shared variable.

SPECIFICATION OF REQUIRE-

MENTS

How to specify what to check

How to specify what to check?!?

 A – Model: Network of Timed Automata

 F – Requirement: temporal logical formula, e.g.
– Invariant: something bad will never happen,

something may happen

– Liveness: something will eventually happen

Model: A

Requirement
Specification: F A ² F

Yes!

No!
Diagnostic
Information

UPPAAL

Specification of Requirements

• TCTL - Timed Computation Tree Logic

• A C C C … a path

• (A,v) (C,v’) …+ time = a timed path

A

B C

P:

P’s compu-

tation tree: A

B

A

C

C C

Quantifiers in TCTL

• E - exists a path ().

• A - for all paths ().

• [] - all states in a path (☐ or G).

• <> - some state in a path (or F).

• We shall look at the following

combinations:

– A[], A<>, E<>, and E[].

E<>p – “p Reachable”

• It is possible to reach a state in which p is

satisfied.

• p is true in (at least) one reachable state.

p

A[]p – “Invariantly p”

• p holds invariantly.

• p is true in all reachable states.

p

p

p

p

p p

A<>p – “Inevitable p”

• p will inevitable become true

– the automaton is guaranteed to eventually

reach a state in which p is true.

• p is true in some state of all paths.

p

p p

E[] p – “Potentially Always

p”
• p is potentially always true.

• There exists a path in which p is true in all

states.

p

p

p

A[](g imply A<> p)

A[](g imply A<> p)

• g leads to p: whenever g is true, p will

inevitable become true.

• In UPPAAL: g --> p

p

p p

g

A Simple Example
• Uppaal uses a continuous time model.

• Concept of time:

• a simple example that makes use of an observer.

c
lo

c
k

x

4

loop

x>=2

reset!

reset?
2

idle taken || ||

x:=0

2 4 6 8

"time"

(a) Test. (b) Observer. (c) Behaviour: one possible run.

First example with an observer.

A Simple Example (cont’d)

• Properties to be verified in Uppaal:

• A [] Obs.taken imply x>=2

 all resets off x will happen when x is above 2

• E<> Obs.idle and x>3

 this property requires, that it is possible to reach a

 state where Obs is in the location idle and x is

 bigger than 3.

A Simple Example: Invariant

c
lo

c
k

x

4

loop

x<=3

2

x>=2

reset!

2 4 6 8

 "time"

(a) Test. (b) Updated behavior with an invariant.

• Add an invariant to the location loop, as shown in figure below

• The system is not allowed to stay in the state more than 3 time

units, so that the transition has to be taken, and the clock reset in

our example holds.

A Simple Example (cont’d)

• Properties that hold in Uppaal:

• A[] Obs.taken imply (x>=2 and x<=3)

 - shows that the transition is taken when x is

between 2 and 3, i.e., after a delay between 2 and 3.

• E<> Obs.idle and x>2

 - it is possible to take the transition when x is

between 2 and 3. The upper bound 3 is checked with

the next property.

• A[] Obs.idle imply x<=3

 - to show that the upper bound is respected.

The former property E<> Obs.idle and x>3 no longer holds.

References

1. A Tutorial on UPPAAL 4.0

(Gerd Behrmann, Alexandre David, and Kim G. Larsen)

 http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf

2. UPPAAL Tool :

 http://www.uppaal.org/

