Model-checking of Real-Time
Systems

Cristina Seceleanu & Paul Pettersson
Embedded Systems, IDT, MDH

PR&GRESS

A national Swedish Strategic Research Centre

b(_,'l. E N{." &
Pay MRTC S
L V' 4 2 Swedish G Foundation for Stralegic Research
z)

- MALARDALEN REAL-TIME o &
MALARDALEN UNIVERSITY RESEARCH CENTRE ‘ogy ¥

Real-Time Systems

SEeNnsors

S

-—

actuators

Plant Controller Program
Continuous Discrete

Real-Time System

A system where correctness not only depends on the
logical order of events but also on their timing!!

E.g.: Air Bags, Cruise Control, ABS

Process Control, Production Lines, Robots
Real-time Protocols
DVD/CD Players

PR&GRESS

Real-Time Model-Checking

Plant Controller Program

Continuous Discrete
sSensors

S e

actuators

Model of
tasks
(automatic?)

(user-supplled)
\ UPPAAL Model
PR&GRESS

Model of
environment J

Model-Checking

Model: A
b e N 4
Z!‘ UPPAAL
No!
Requirement R A satisfies I[r)wi%gmwoasttiign

Specification: %

A — Model: Network of Timed Automata

— Requirement: temporal logical formula, e.g.

— Invariant: something bad will never happen,
something may happen

— Liveness: something will eventually happen
PR&GRESS

Formal design

B [repisd=

e b | Sralwcs | e

| [
1 brngee
Dbl e iorn
5 e
T ima
w Trozmn quEprandy
o Syt

e s Cpduss.

e

el &8s WE -

Jnom

] e

BE|

T P | 0] & o o

Modeling

PR&GRESS

Traird. dppz

and analysis

Simulation %

Iovsiladel e Cutmien Qdiee Hel

Al % E & N~

[T ———y
TN T

Syatwn Edtw | Sralscs el

+ Tendrd.Ceean

Verification

Trard Ages -2 Tosn i roam
Trwrd dgpe s Teginl Crons
Trmnd dgpe - TS
Traired Agpr 2 Teadvd Crom
]l el

i e
g =8 I‘, Dot |
Pariaiie = -
A, A
i Frvat :
B =
=
Traind_Pisind Traind 1 c I
-] [os
B O
Trms Fi L
A
Fray [rockey
Dy e | Maekom
e -

Is this error state
reachable?

Example model-based verification

Max response time
between reaching
these two states?

II I-r

: ‘. :n-l-'l-

Is this variable value |.
always less than 64?

Is the system
- | guaranteed to
reach this state?

| B — = Is this component
o s P — .) Crare— i, gt
- p—— =—_| always operating in S
this state? 6

PR&GRESS

Model-checking of Real-Time
Systems

* Modeling Formalism
« A Simple Example

PR&GRESS

Finite state automata

Finite state graph, with
Set of nodes (states)
Set of edges (transitions)
Set of labels (actions)

PR&GRESS

Light Control

. once = light
. twice quickly = light will get brighter
. again = light off.

PR&GRESS

Finite state automata with
variables

e Extend FSA with variables e.g.

— Relational automata and/or guarded commands

e Guards and assignments on transitions
e Maybe infinite state, but finite state for bounded domain

— Timed automata Is another example (clocks)

e Guards and resets over clock variables on transitions
¢ Infinite state!

e Semantics: Transition Systems

11
PR&GRESS

9

guard

action

reset

U

Timed Automata .. zoimi990

e Guard
location Q — Timing constraints e.g. X>10
X>10 _
3 e Action
X-=0 — Synchronization e.g. a
<:i> (handshake: a! for send,
a? for receive)

e Clock reset
— Reset clock to 0 e.g. X:=0

12
PR&GRESS

Light Control

. once = light
. twice quickly = light will get brighter
. again = light off.

PR&GRESS

Timed Automata:

Light Control with Timing

X>3

Add real-valued clock x to
measure the delay between events

PR&GRESS

Alur & Dill 1990

Timed Automata: Semantics

e Clocks: x, y

used

- for synchronization Guard
Boolean combination of integer bounds

on clocks

_ Reset
x<=5&y>3 Action performed on clocks

State
(Jocation, x=v , y=u) wherevuarein R

Transitions

et (n, x=2.4, y=3.1415) a

- (<)
Disct (m, x=0, y=3.1415)

oyt (7, x=2.4, y=3.1415) &l.1)
e (n, x=3.5, y=4.2415)

PR&GRESS

Timed Automata

with Invariants

n
/‘ x<=5
xX<=5&y>3
Location
Invariants a

PR&GRESS

Clocks: x y
Transitions
2
(n, x=2.4, y=3.1415) A
e(1.1)

(n, x=2.4, y=3.1415)
(n, x=3.5, y=4.2415)

——L

Invariants
ensure
progress!!

o 4

Clock Constraints

For set C of clocks with z,y € C, the set of clock constrainis over C, ¥(C), is
defined by

cu::=m-<c‘m—y-<c‘ —uo:‘(ce A a)

where ¢ € N and < € {<, <}

PR&GRESS

Timed Automata:
Example

PR&GRESS

Timed Automata:
Example

X>=2 T 4

value
of z
2

PR&GRESS

Timed Automata:
Example

2<=x<=3

PR&GRESS

Timed Automata:
Example

2<=x<=3

PR&GRESS

Timed Automata:
Example

PR&GRESS

Timed Automata:
Example

PR&GRESS

Timed Automata: Example
(periodic task, period 20)

x=20

PR&GRESS

Timed Automata: Example
(sporadic task w min period 20)

x=20

>
|l
o

PR&GRESS

Timed Automata: Example
(aperiodic task, every 5 to 100)

5<x<100

>
|l
o

PR&GRESS

Timed Automata: Light
Switch

« Switch may be turned
x>2 press? x:=0 on whenever at least 2
\ X>2 time units has elapsed

since last “turn off”
press?

 Light automatically
x:=0 x=9 X:=0 switches off after 9 time
units if it is not pressed.

PR&GRESS

Semantics Definition

o Clock valuations: V(C) v:C—>Rso

o Slate: (I,v) where lelL and veV(C)

e Action transition (I,v)——(I'\Vv') iff ()-g9ar ()
g(v) and v'=Vv[r] and Inv(l")(v')

o Delay transition (] v) —(l,v+d) iff

Inv(l)(v+d") whenever d'<deR=:o

PR&GRESS

Timed Automata: Example

start N x>2 push xy :=0 o9
X=y=
@ oo o

x:=0 click y=9 x:=0
(off ,x =y =0)—2>(off ,x =y =3.5)—2&",
(on,x=y=0)—2—>(on,x=y=7)—2",
(on,x=0,y=7)——(0n,x=3,y=7+3)——3 ,

(on,x=9—(7+3),y=9)—* 5(off ,x=0,y=9)...

PR&GRESS

Networks of Timed Automata

with (finite) integer variables

SRR

y<=4 Two-way synchronization
............ . on complementary actions.

x:=0 Closed Systems!
Y Y Y
12
AN NN

Example transitions

tau
(/1, m1,......... , x=2, y=3.5i=3...) —— (I12Zm2,........ Xx=0, y=3.5 i=7.....)

PR&GRESS

Datastructure: Zones
From infinite to finite

State Symbolic state (set)
(n, x=3.2, y=2.5) (n, 1<x<4, 1<y<3)
conjunction of
y Yy X-y<=n, X<=>n
X | X

PR&GRESS

Symbolic Transitions

using Zones
/ y

Yy
n delays to

X X
y y
d C conjuncts to
X
X

@{ projects to

Thus (n,1<=x<=4,1<=y<=3) =a => (m,3<X, y=0)

32

PR&GRESS

Zones = Conjuctive constraints

« A zone Zis a conjunctive formula:
91&92&---&9n
where g; Is a clock constraint:
X;~ b or x-x~b;
 Use a zero-clock x, (constant O)
« A zone can be re-written as a set:
X% ~ by | ~Is <or <, 1,j<n}

« This can be represented as a MATRIX, DBM
(Difference Bound Matrices)

PR&GRESS

Operations on Zones

Delay: SP(Z) or ZT
— [ZT] = {u+d| d € R, ue[Z]}

Weakest pre-condition: WP(Z) or Z{ (the dual of Z7T)
— [Z] = {u| u+de[Z] for some deR}

Reset: {x}Z or Z(x:=0)
— [{x}Z] = {u[0/x] | u €[Z]}

Conjunction
- [Z&g]= [Z]N[9]

PR&GRESS

An Important theorem on Zones

* The set of zones Is closed under all constraint
operations (or)

* That Is, the result of the operations on a zone Is
a zone

* That is, there will be a zone (a finite object I.e a
zone/constraints) to represent the sets: [Z1],

4], [{x}Z]

PR&GRESS

One-step reachability: Si=>S;

. Delay: (n,Z2) > (n,Z’)whereZ’ = ZT A inv(n)

« Action: (n,Z) — (m,Z’) where Z’ = {x}(Z AQ)

e Successors(n,Z)={(m,Z’) | (n,Z2) »>—>(m,Z"),
7’ #J}
« Sometime we write: (n,2)>(m,Z’) if (m,Z") is a
successor of (n,Z)

PR&GRESS

Now, we have a search problem

(ng,Zy)

/1N

PR
/ /N

PR&GRESS

Train Crossing

Stopable
Area

& [10,20]

[3,5]

Queue

PR&GRESS Eelte

Train Crossing

Communication via channels and
shared variable.

Stopable
Area
- A e
appr,
stop [3,5] leave

Queue €mpty
nonempty

hd, add,re Gate

PR&GRESS

How to specify what to check

SPECIFICATION OF REQUIRE-
MENTS

PR&GRESS

How to specify what to check?!?

Model: A
a T '
— Wes
‘{ ‘ UPPAAL
No!
Requirement R A2 Diagnostic
Information

Specification: %

A — Model: Network of Timed Automata

— Requirement: temporal logical formula, e.qg.

— Invariant: something bad will never happen,
something may happen

— Liveness: something will eventually happen
PR&GRESS

Specification of Reguirements

« TCTL - Timed Computation Tree Logic

P’s compu- QLD
tation tree:

'° WaN

)
&) /@/ \@\ é;\

c A>C>C—->C=> ... apath
* (A,v) 2 (C,V) = ...+ time = a timed path
PR&GRESS

P:

Quantifiers in TCTL

 E - exists a path (3).
A - for all paths (V).
« [] - all statesin a path (L] or G).
* <> -some state in a path (¢ or F).

* We shall look at the following
combinations:

— A[], A<>, E<>, and E[].

PR&GRESS

E<>p - “p Reachable”

* |t Is possible to reach a state in which p Is
satisfied.

/N
Q Q

7aN
PR b\

* pistrue In (at least) one reachable state.

PR&GRESS

Allp — “Invariantly p”

* p holds invariantly.

g‘;p

Fans

* pis true In all reachable states.

PR&GRESS

A<>p — “Inevitable p”

* p will Inevitable become true

—the automaton is guaranteed to eventually
reach a state in which p Is true.

o
/N
A &
ARy

* pIs true In some state of all paths.

PR&GRESS

E| | p — “Potentially Always
p!!

* p Is potentially always true.

o

P
/ N\
A&
O/ Q b\p
/ N
* There exists a path in which p is true Iin all
states.

PR&GRESS

All(g imply A<>p)

PR&GRESS

All(g imply A<>p)

* g leads to p: whenever g is true, p will
Inevitable become true.

<5

Fuh

. In UPPAAL: g --> p

PR&GRESS

A Simple Example

« Uppaal uses a continuous time model.
« Concept of time:
« a simple example that makes use of an observer.

X
4
(&)
O
4l ©
reset? N A 77777777777777777
idle taken 1 1 i
loop _ H ' | | |
X>=2
=0 2 4 6
(a) Test. (b) Observer. (c) Behaviour: one possible run.

First example with an observer.

PR&GRESS

A Simple Example (cont'd)

* Properties to be verified in Uppaal:

A [] Obs.taken imply x>=2
all resets off x will happen when x is above 2

 E<> Obs.idle and x>3
this property requires, that it is possible to reach a
state where Obs is in the location idle and x Is
bigger than 3.

PR&GRESS

A Simple Example: Invariant

« Add an invariant to the location loop, as shown in figure below
« The system is not allowed to stay in the state more than 3 time

units, so that the transition has to be taken, and the clock reset in
our example holds.

loop K>=D
reset!
x<=3

(a) Test. (b) Updated behavior with an invariant.
PR&GRESS

2 4 6 8 "time”

A Simple Example (cont'd)

* Properties that hold in Uppaal:

« A[] Obs.taken imply (x>=2 and x<=3)

- shows that the transition is taken when x Is
between 2 and 3, i.e., after a delay between 2 and 3.
 E<> ODbs.idle and x>2

- It Is possible to take the transition when x is
between 2 and 3. The upper bound 3 is checked with
the next property.

« A[] Obs.idle imply x<=3
- to show that the upper bound is respected.

The former property E<> Obs.idle and x>3 no longer holds.

PR&GRESS

References

1. ATutorial on UPPAAL 4.0
(Gerd Behrmann, Alexandre David, and Kim G. Larsen)

http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
2. UPPAAL Tool :

http://www.uppaal.org/

PR&GRESS

