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Real-Time Systems 

Plant 
Continuous 

Controller Program 
Discrete 

E.g.: Air Bags, Cruise Control, ABS 
Process Control, Production Lines, Robots 
Real-time Protocols 
DVD/CD Players 
 

Real-Time System 
A system where correctness not only depends on the 
logical order of events but also on their timing!! 
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Real-Time Model-Checking  
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Model-Checking 

 A – Model: Network of Timed Automata 

 F – Requirement: temporal logical formula, e.g. 
– Invariant: something bad will never happen, 

something may happen 

– Liveness: something will eventually happen 

Model: A 
 
 

Requirement  
Specification: F A satisfies F 

Yes! 

No!                 
Diagnostic  
Information 

UPPAAL 

 

  

  

  



Formal design and analysis 

Modeling 

Simulation 

Verification 



Example model-based verification 
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Is this error state 

reachable? 

Is this component 

always operating in 

this state? 

Max response time 

between reaching 

these two states? 

Is this variable value 

always less than 64? 

Is the system 

guaranteed to 

reach this state? 



Model-checking of Real-Time 

Systems 

• Modeling Formalism 

• A Simple Example 

 

 

 



Finite state automata 

● Finite state graph, with 

● Set of nodes (states) 

● Set of edges (transitions) 

● Set of labels (actions) 

9 



Light Control 

Wanted Behaviour:   
• pressed once = light  

• pressed twice quickly = light will get brighter 
• pressed again = light off. 

Off Light Bright 
press? press? 

press? 

press? 
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Finite state automata with 

variables 

• Extend FSA with variables e.g. 

– Relational automata and/or guarded commands 

• Guards and assignments on transitions 

• Maybe infinite state, but finite state for bounded domain 

– Timed automata is another example (clocks) 

• Guards and resets over clock variables on transitions 

• Infinite state!  

• Semantics: Transition Systems 

guard 

action 

reset 
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Timed Automata  Alur & Dill 1990 

• Guard 
– Timing constraints  e.g. X>10 

 

• Action 

–  Synchronization e.g. a 

(handshake: a! for send, 

a? for receive) 

 

• Clock reset 
– Reset clock to 0 e.g. X:=0 

a 

X>10 

X:=0 

location 



Light Control 

Wanted Behaviour:   
• pressed once = light  

• pressed twice quickly = light will get brighter 
• pressed again = light off. 

Off Light Bright 
press? press? 

press? 

press? 



Off Light Bright 
press? press? 

press? 

press? 

SOLUTION: Add real-valued clock x to 
measure the delay between press events  

X:=0 

X<=3 

X>3 

  with Timing 

Timed Automata: 

Light Control 



Timed Automata: Semantics 

n 

m 

a 

Alur & Dill 1990 

Clocks:  x, y 

x<=5 & y>3 

x := 0 

Guard  
Boolean combination of integer bounds 
on clocks 

Reset 
Action performed on clocks 

Transitions 

( n , x=2.4 , y=3.1415 )    
                                 ( n , x=3.5 , y=4.2415 ) 

e(1.1) 

( n , x=2.4 , y=3.1415 )    
                                 ( m , x=0 , y=3.1415 ) 

a 

State 
  ( location , x=v , y=u )    where v,u are in R 

Action 
used 

for synchronization 



n 

m 

a 

Clocks:  x, y 

x<=5 & y>3 

x := 0 

Transitions 

( n , x=2.4 , y=3.1415 )    
                                 ( n , x=3.5 , y=4.2415 ) 

            e(1.1) 

( n , x=2.4 , y=3.1415 )    
                                   

      e(3.2) 

x<=5 

y<=10 

Location 
Invariants 

g1 
g2 g3 

g4 

Timed Automata    
with Invariants 

Invariants 
ensure 

progress!! 



Clock Constraints 
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Timed Automata: 

Example 

  l 

X>=2 

X:=0 

X:=0 
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Timed Automata: 

Example 

  l 

X>=2 

X:=0 

X:=0 
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Timed Automata: 

Example 

  l 

2<=x<=3 

X:=0 

X:=0 
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Timed Automata: 

Example 

  l 

2<=x<=3 

X:=0 

X:=0 
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Timed Automata: 

Example 

   l 

X>=2 

X:=0 

X:=0 

X<=3 
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Timed Automata: 

Example 

   l 

X>=2 

X:=0 

X:=0 

X<=3 
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Timed Automata: Example 

(periodic task, period 20) 

x=20 

x:=0 

T 
x≤20 
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Timed Automata: Example  

(sporadic task w min period 20) 

x≥20 

x:=0 

T 
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Timed Automata: Example  

(aperiodic task, every 5 to 100) 

5≤x≤100 

x:=0 

T 
X≤100 
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Timed Automata: Light 

Switch 

• Switch may be turned 

on whenever at least 2 

time units has elapsed 

since last “turn off” 

 

• Light automatically 

switches off after 9 time 

units if it is not pressed. 

off  on 

 x>2    press?    x:=0 
x>2 

press? 

X:=0 x:=0            x=9 

x≤9 
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Semantics Definition 

• Clock valuations: 

 

• State: 

 

• Action transition  
 

 

• Delay transition 
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Timed Automata: Example 
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yxoffyxon

yxonyxon

yxonyxon

yxoffyxoff

click

push

push










off on 

 x>2   push   x,y :=0 
x>2 

push 

x:=0 y=9 

y<=9 

x:=0 

start 
x=y=0 

click 



Networks of Timed Automata 

l1 

l2 

a! 

x>=2 
i==3 

x := 0 
i:=i+4 

m1 

m2 

a? 

y<=4 

  

  

  

…………. 
Two-way synchronization 
on complementary actions. 
 
Closed Systems! 

 
(l1, m1,………, x=2, y=3.5, i=3,…..)              (l2,m2,……..,x=0,  y=3.5, i=7,…..) 
 

tau 
Example transitions 

with (finite) integer variables 



Datastructure: Zones 
From infinite to finite 

State 

(n, x=3.2, y=2.5 ) 

x 

y 

x 

y 

Symbolic state (set) 

Zone: 
conjunction of 
x-y<=n, x<=>n 

(n, 1≤x≤4, 1≤y≤3) 
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Symbolic Transitions 

n 

m 

x>3 

y:=0 

delays to 

 conjuncts to 

projects to 

x 

y 

1<=x<=4 
1<=y<=3 

x 

y 
1<=x, 1<=y 
-2<=x-y<=3 

x 

y 3<x, 1<=y 
-2<=x-y<=3 

3<x, y=0 

x 

y 

Thus  (n,1<=x<=4,1<=y<=3)  =a => (m,3<x, y=0)  

a 

using Zones 



Zones = Conjuctive constraints 

• A zone Z is a conjunctive formula: 

        g1 & g2 & ... & gn 

        where gi is a clock constraint: 

        xi ~ bi  or  xi-xj~bij 

• Use a zero-clock x0  (constant 0) 

• A zone can be re-written as a set: 

             {xi-xj ~ bij | ~ is < or , i,jn} 

• This can be represented as a MATRIX, DBM 

      (Difference Bound Matrices) 

 



Operations on Zones 

• Delay: SP(Z) or Z 
– [Z] = {u+d| d  R, u[Z]} 

 

• Weakest pre-condition: WP(Z) or Z  (the dual of Z) 
– [Z] = {u| u+d[Z] for some dR} 

 

• Reset: {x}Z or Z(x:=0) 
– [{x}Z] = {u[0/x] | u [Z]} 

 

• Conjunction 
– [Z&g]= [Z][g] 

 
 



An important theorem on Zones 

• The set of zones is closed under all  constraint 

operations (including x:=x-c or x:=x+c) 

• That is, the result of the operations on a zone is 

a zone 

• That is, there will be a zone (a finite object i.e a 

zone/constraints) to represent the sets: [Z],  

[Z], [{x}Z]  

 

 



One-step reachability: SiSj 

• Delay:  (n,Z)  (n,Z’) where Z’= Z  inv(n) 
 

• Action: (n,Z)  (m,Z’) where Z’= {x}(Z g) 

 

 

 

• Successors(n,Z)={(m,Z’) | (n,Z) (m,Z’), 
Z’Ø} 

• Sometime we write: (n,Z)(m,Z’) if (m,Z’) is a 
successor of (n,Z) 

                                     

n m 
g x:=0 

if 



Now, we have a search problem 

 

(n0,Z0) 
 
 

S2, S3  ......   Sn 
   

T2                  

 

T1 



Train Crossing 

River 

Crossing 

Gate 

Stopable 
Area 

[10,20] 

[7,15] 

Queue 

[3,5] 



Train Crossing 

River 

Crossing 

Gate 

Stopable 
Area 

[10,20] 

[7,15] 

Queue 

[3,5] 
appr, 
stop 

leave 

go 

empty 
nonempty 
hd, add,rem 

e 

Communication via channels and 
shared variable. 



SPECIFICATION OF REQUIRE-

MENTS 

How to specify what to check 



How to specify what to check?!? 

 A – Model: Network of Timed Automata 

 F – Requirement: temporal logical formula, e.g. 
– Invariant: something bad will never happen, 

something may happen 

– Liveness: something will eventually happen 

Model: A 
 
 

Requirement  
Specification: F A ² F 

Yes! 

No!                 
Diagnostic  
Information 

UPPAAL 

 

  

  

  



Specification of Requirements 

• TCTL - Timed Computation Tree Logic 

 

 

 

 

 

• A  C C  C  … a path 

• (A,v)  (C,v’)  …+ time = a timed path 

A 

B C 

P: 

P’s compu-

tation tree: A 

B 

A 

C 

C C 



Quantifiers in TCTL 

• E   - exists a path (  ). 

• A   - for all paths (  ). 

• [ ]  - all states in a path ( ☐ or G). 

• <>  - some state in a path (  or F). 

 

• We shall look at the following 

combinations:  

–  A[], A<>, E<>, and  E[]. 

 



E<>p – “p Reachable” 

• It is possible to reach a state in which p is 

satisfied. 

 

 

 

 

 

• p is true in (at least) one reachable state. 

p 



A[]p – “Invariantly p” 

• p holds invariantly. 

 

 

 

 

 

• p is true in all reachable states. 

p 

p 

p 

p 

p p 



A<>p – “Inevitable p” 

• p will inevitable become true 

– the automaton is guaranteed to eventually 

reach a state in which p is true. 

 

 

 

 

• p is true in some state of all paths. 

p 

p p 



E[ ] p – “Potentially Always 

p” 
• p is potentially always true. 

 

 

 

 

 

• There exists a path in which p is true in all 

states. 

p 

p 

p 



A[]( g imply A<> p ) 



A[]( g imply A<> p ) 

• g leads to p: whenever g is true, p will 

inevitable become true. 

 

 

 

 

 

• In UPPAAL: g --> p 

p 

p p 

g 



A Simple Example  
• Uppaal uses a continuous time model.  

• Concept of time:  

• a simple example that makes use of an observer. 

 

 

 

 

c
lo

c
k
 
x

 

 
 
 
 

4 

 
 

 
loop  

x>=2 

reset! 

reset? 
2   

idle  taken ||  ||  
 
 
 

x:=0 

 
 
 
 
2  4  6  8 

 
 
 
 
"time" 

(a) Test. (b) Observer. (c) Behaviour: one possible run. 
 

 
First example with an observer. 

 
 
 



A Simple Example (cont’d) 

 

• Properties to be  verified in Uppaal: 
 

•  A [] Obs.taken imply x>=2  

  all resets off x will happen when x is above 2 

 

• E<> Obs.idle and x>3  

 this property requires, that it is possible to reach a 

 state where Obs is in the location idle and x is 

 bigger than 3.  



A Simple Example: Invariant  
 

 

 

c
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4 

 

 
 

loop 

 
x<=3 

2 

x>=2 

reset! 

 
 
 
 
2  4  6  8 
 
 
 

 

 
 
 
    "time" 

 

(a) Test. (b) Updated behavior with an invariant. 

 

• Add an invariant to the location loop, as shown in figure below 

• The system is not allowed to stay in the state more than 3 time 

units, so that the transition has to be taken, and the clock reset in 

our example holds. 



A Simple Example (cont’d) 

 

• Properties that hold in Uppaal: 
 

• A[] Obs.taken imply (x>=2 and x<=3)  

 - shows that the transition is taken when x is 

between 2 and 3, i.e.,  after a delay between 2 and 3. 

• E<> Obs.idle and x>2  

 - it is possible to take the transition when x is 

between 2 and 3. The   upper bound 3 is checked with 

the next property. 

• A[] Obs.idle imply x<=3  

 - to show that the upper bound is respected. 

 

The former property E<> Obs.idle and x>3 no longer holds. 
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